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Abstract

 A sensorimotor sequence may contain information struc-
ture at several different levels. In this study, we investigated the
hypothesis that two dissociable processes are required for the
learning of surface structure and abstract structure, respec-
tively, of sensorimotor sequences. Surface structure is the sim-
ple serial order of the sequence elements, whereas abstract
structure is de�ned by relationships between repeating se-
quence elements. Thus, sequences ABCBAC and DEFEDF have
different surface structures but share a common abstract struc-
ture, 123213, and are therefore isomorphic. Our simulations of
sequence learning performance in serial reaction time (SRT)
tasks demonstrated that (1) an existing model of the primate
fronto-striatal system is capable of learning surface structure
but fails to learn abstract structure, which requires an addi-
tional capability, (2) surface and abstract structure can be
learned independently by these independent processes, and
(3) only abstract structure transfers to isomorphic sequences.

We tested these predictions in human subjects. For a sequence
with predictable surface and abstract structure, subjects in
either explicit or implicit conditions learn the surface struc-
ture, but only explicit subjects learn and transfer the abstract
structure. For sequences with only abstract structure, learning
and transfer of this structure occurs only in the explicit group.
These results are parallel to those from the simulations and
support our dissociable process hypothesis. Based on the syn-
thesis of the current simulation and empirical results with our
previous neuropsychological �ndings, we propose a neuro-
physiological basis for these dissociable processes: Surface
structure can be learned by processes that operate under
implicit conditions and rely on the fronto-striatal system,
whereas learning abstract structure requires a more explicit
activation of dissociable processes that rely on a distributed
network that includes the left anterior cortex. 

INTRODUCTION

Essentially all aspects of cognitive function are embed-
ded in a sequential context, as seen in the perception
and production of language, game playing, problem solv-
ing, and motor control. In such domains, humans regu-
larly perceive and produce novel legal sequences, relying
on a capacity to manipulate rules that permit generaliza-
tion to new instances. An open question in cognitive
science is whether there are distinct forms of knowledge
related to rules versus instances, with the corresponding
question in cognitive neuroscience as to whether these
distinct forms of knowledge must be treated by distinct
neural systems (e.g., Gomez & Schvaneveldt, 1994;
Knowlton & Squire, 1993, 1996; Shanks & St. John, 1994).
The current research explores this question in the do-
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main of sensorimotor sequence learning, with results
that argue for the necessity of distinct processes to
accommodate instance versus rule-based knowledge.

We will explore this processing distinction in the
domain of serial reaction time (SRT) sequence learning.
In the SRT paradigm, subjects perform a series of manual
responses to the successive elements in a series of visual
stimuli. Nissen and Bullemer (1987) demonstrated that
the reaction times (RTs) for these responses are sig-
ni�cantly reduced if the stimuli appear in a repeating
sequence, as opposed to in a random order. This reduc-
tion in RTs between responses for sequential versus
random series is a measure of the sequence learning.

Within the SRT domain, we approach the instance
versus rule dissociation in terms of “surface” and “ab-
stract” structure in sensorimotor sequences. Surface



structure is de�ned by the serial order of the sequence
elements, at the level of verbatim and aggregate struc-
ture as de�ned by Stadler (1992). In contrast, abstract
structure is de�ned by the relations between elements
that repeat within a sequence. In this context, the two
sequences ABCBAC and DEFEDF share the same abstract
structure 123213 and have completely unrelated surface
structures (i.e., they are isomorphic). If we consider two
such isomorphic sequences in terms of what is pre-
dicted by the abstract structure, we observe that in both
sequences the last three elements are predictable by the
�rst three, which themselves are unpredictable. In an
SRT protocol with a repeating sequence like ABCBAC,
surface structure learning should be manifest by a uni-
form RT reduction for both the predictable and unpre-
dictable elements. Learning of the abstract structure
should be manifest by a nonuniform pro�le, with addi-
tional RT reduction for the predictable versus unpre-
dictable elements that should transfer to new
isomorphic sequences.

A Theoretical Basis for Dissociable Processes

From a theoretical perspective, there is an important
relation between the structure of information to learn
(e.g., surface or abstract structure) and the class of ma-
chines or architectures that are capable of learning or
processing this structure (e.g., Chomsky, 1959; Turing,
1936). This would predict, for example, that there is a
system capable of learning surface structure that cannot
learn abstract structure. Here we describe a neural net-
work model based on the primate fronto-striatal system
(Dominey, 1995; Dominey, Arbib, & Joseph, 1995) and
present simulation results demonstrating that this system
is capable of learning surface structure but is not capable
of learning and transferring abstract structure, which
requires separate processing capabilities (Dominey
1997b; Dominey, Ventre-Dominey, Broussolle, & Jean-
nerod, 1995a, 1995b).

Based on these results and our initial hypothesis, we
predict that there are two independent and behaviorally
dissociable mechanisms for learning surface and abstract
structure in humans. As noted by Shanks and St. John
(1994), the learning of rules or abstract structure is
characterized by a conscious effort to discover and ex-
ploit the appropriate rules, an effort that can be invoked
by speci�c instructions to make such a conscious effort
(Gick & Holyoak, 1983). This position is supported by
studies of analogical transfer in problem solving that
involve the extraction of an abstract structure common
to several problems with different surface structures
(Gick & Holyoak, 1983; Holyoak, Junn, & Billman, 1984;
Holyoak, Novick, & Melz, 1994). Such studies demon-
strate that this process requires the explicit intention to
�nd the abstract structure. In contrast, the learning of
instances or surface structure is oriented toward memo-
rization of the instances themselves (Shanks & St. John,

1994), without a conscious processing effort to search
for common, rule-based structure (e.g., Cohen, Ivry, &
Keele, 1990, Curran & Keele, 1993). These studies suggest
the existence of dissociable mechanisms for processing
surface and abstract structure.

Several studies of arti�cial grammar learning (AGL)
have also provided convincing evidence for the exist-
ence of dissociable mechanisms for surface versus ab-
stract structure representations (Gomez, 1997; Gomez &
Schvaneveldt, 1994; Knowlton & Squire, 1996). Knowl-
ton and Squire demonstrated that both rule adherence
(abstract structure) and chunk strength, that is, similarity
of letter bigram and trigram distribution (surface struc-
ture), in�uence grammaticality judgments. Likewise,
Gomez and Schvaneveldt’s results indicate that training
on legal letter pairs is suf�cient for classi�cation with
the same letter set, but that training with longer strings
is required to allow transfer of abstract structure to a
changed letter set. This suggests that pairs provide a
source of surface structure, whereas abstract structure is
only available in strings. These results thus indicate that
in AGL there are dissociable forms of representation for
surface and abstract structure, respectively.

Although AGL tasks are often considered to test im-
plicit learning, it is important to note that during the test
phase the subjects are explicitly instructed to apply a set
of rules to classify the new objects, and it is likely that
some rule abstraction takes place during this explicit
testing phase (Perruchet & Pacteau, 1991; Reddington &
Chater, 1996). Likewise, Mathews et al. (1989) have dem-
onstrated that this grammatical knowledge can become
at least partially explicit and that for grammars that
exploit relational properties like the ones used in our
current studies, learning can only occur in truly explicit
conditions. This relation between explicit processing and
AGL has recently been further clari�ed by Gomez
(1997), who demonstrated that subjects’ ability to trans-
fer abstract structure learning to changed letter sets was
invariably accompanied by explicit knowledge as re-
vealed in direct tests. Conversely, subjects who learned
�rst-order surface structure dependencies but failed to
display transfer of the abstract structure in the changed
letter set condition did not differ from naive controls on
the direct tests. Finally, Gomez demonstrated that for the
same testing materials presented either in a whole-string
AGL task or a letter-by-letter sequence learning task,
transfer and the associated acquisition of explicit knowl-
edge occurred only in the AGL task. This indicates that,
especially in sequencing tasks, the acquisition of abstract
structure and its transfer to isomorphic sequences in-
volves explicit processing.

We thus predict, for our sequence learning task, that
in completely uninformed, implicit conditions, processes
that are capable of learning surface structure but not
abstract structure will be accessible, whereas in explicit
conditions both will be accessible. In response to these
predictions, we will report the results of three experi-
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ments in human subjects, demonstrating that surface
structure can be learned in implicit conditions but that
learning and transferring abstract structure occur only in
explicit conditions. Based on a synthesis of these obser-
vations with our previous neuropsychological �ndings
(Dominey & Georgieff, 1997; Dominey & Jeannerod,
1997; Dominey et al., 1995a, 1995b; Dominey, Ventre-
Dominey, Broussolle, & Jeannerod, 1997), we propose a
neurophysiological basis for the dissociable processing
of surface and abstract structure observed in the simula-
tion and human experiments.

A DUAL PROCESS MODEL OF SURFACE AND
ABSTRACT STRUCTURE LEARNING

An important class of sequence learning models demon-
strates the capability to predict future events by encod-
ing the context or the history of previous events via
recurrent connections or self-connections (e.g., Cleere-
mans & McClelland, 1991; Dominey, 1995, 1998a, 1998b;
Elman, 1990). In these recurrent networks, the context
is sensitive to events several positions in the past, allow-
ing the networks to resolve ambiguities, as in determin-
ing the successor to B in the sequence ABCBAC. More
generally, these recurrent systems are ideally suited for
learning surface structure. However, this recurrent con-
text mechanism appears to be insuf�cient to represent
the common relation between two isomorphic se-
quences ABCBAC and DEFEDF. The ability to represent
this abstract structure requires the capacity to recognize
the structure of repeating elements and to let this infor-
mation be the source of the context. This distinction will
be clari�ed in the following description of the dissoci-
able models for surface and abstract structure processing
that together make up the dual process model.

The surface model (Figure 1 & “Appendix”) consists
of the Input, State, and Output units and falls into the
general category of recurrent networks described above
(Dominey, 1995, 1998a; Dominey, Arbib, et al., 1995). The
model architecture is based closely on the neuro-
anatomy of the primate fronto-striatal system, and the
model has been used to explain detailed electrophysi-
ological activity in the primate prefrontal cortex and
basal ganglia during sequence processing tasks
(Dominey, Arbib, et al., 1995; Dominey & Boussaoud,
1997). Input, Output, and State each consist of 5 ×  5
arrays of leaky integrator units whose response latency
(i.e., reaction time) is a function of the strength of their
input signals. State is in�uenced by Input and Output
(Equations 1 & 2; see “Appendix” for all equations) and
has recurrent excitatory and inhibitory connections.
State thus plays the crucial role of encoding sequence
context, corresponding to the prefrontal cortex in the
fronto-striatal system, whereas Output corresponds to
the striatum (Dominey, Arbib, et al., 1995). Sequences are
presented to the model by activating individual units
(1 to 25) in the Input array. Input units are directly

connected to their corresponding Output units. These
connections are responsible for the baseline reaction
times (RTs) for responses in Output to stimuli presented
to Input. This baseline reaction time is modulated by
connections from State to Output that are modi�able by
learning (Equations 3 & 4). These connections corre-
spond to cortico-striatal synapses that are modi�able by
reward-related dopamine release in the striatum
(Dominey, Arbib, et al., 1995).

Figure 1. Schematic representation of an anatomically structured
model for learning surface and abstract structure. Surface model:
Presentation of sequence stimuli to Input activates both State (corre-
sponding to prefrontal cortex in Dominey, Arbib, et al., 1995) and
Output (corresponding to Caudate nucleus of striatum in Dominey,
Arbib, et al., 1995). State is a recurrent network whose activity over
time encodes the sequence context, that is, the history of previous
sensory (Input) and motor (Output) events. At the time of each Out-
put response there is a speci�c pattern of activity, or context, in
State. Connections from State to Output (dotted line) are modi�ed
during sequence learning, thus binding each sequence context in
State with the corresponding response in Output for each sequence
element, yielding reduced reaction times (RTs). Abstract model exten-
sion: A short-term memory (STM) encodes the 7 ± 2 previous re-
sponses. Recog detects repetitions between current response and
previous responses in and provides this input to State. Modi�able
connections (dotted line) from State gate the contents of appropri-
ate STM elements to Output when repetitive structure is predict-
able, reducing RTs for predictable elements in isomorphic
sequences. Left: The surface model can learn the serial order of
sequence elements 613163 but cannot transfer this knowledge to
isomorphic sequence 781871. Right: The abstract model learns the
relations between repeating elements in 613163 as u, u, u, n -  2,
n -  4, n -  3 (where “u” signi�es unpredictable, and “n -  2” indi-
cates a repetition of the element two places behind, etc.). This
abstract structure transfers completely to the isomorphic sequence
781871.
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Learning Surface Structure

In the SRT task simulations, each element in a sequence
is presented in Input, which thus generates a response
in Output with the baseline reaction time. When a re-
sponse is generated, active units in State encode the
current sequence context, and connections from these
State units to units in Output coding the response are
strengthened, thus binding the sequence context to the
current element in the sequence. The result of this learn-
ing is that the next time this same pattern of sequence
context activity in State occurs (i.e., the next time the
sequence of elements that precede the current element
is presented) the strengthened State-Output connections
will cause State to increasingly activate the appropriate
Output units (effectively predicting the current se-
quence element), resulting in a reduced RT for this
response. By this mechanism, the learning of surface
structure will be demonstrated as RT reductions for all
elements in the learned repeating sequence. Indeed, we
have recently demonstrated that this model is robust in
its ability to simulate SRT learning in normal and “dis-
traction” conditions for surface structure, based on its
sensitivity to temporal as well as serial sequence organi-
zation (Dominey, 1998a, 1998b). The model fails, how-
ever, to learn abstract structure (Dominey 1997b;
Dominey et al., 1995a, 1995b).

Learning Abstract Structure

To permit the representation of abstract structure as
we’ve de�ned it, the model must be capable of compar-
ing the current response with previous responses to
recognize repetitive structure (i.e., u, u, u, n -  2, n -  4,
n -  3 for ABCBAC, where “u” signi�es unpredictable, and
“n -  2” indicates a repetition of the element two places
behind, etc.). These functions would rely on the more
nonsensorimotor associative areas of the anterior cortex
and would permit the generalization of grammarlike
rules to new, but “legal,” sensorimotor sequences
(Dominey, 1997b). To make this possible, we introduced
a short-term memory (STM) mechanism (Equation 5)
that is continuously updated to store the previous 7 ± 2
responses (see Lisman & Idiart, 1995) and a Recognition
mechanism (Equation 6) that compares the current re-
sponse to the stored STM responses to detect any re-
peated elements (Dominey et al., 1995a, 1995b). This
permits the recoding of sequences in terms of their
abstract structure that is now provided as input to State
(Equation 1 ). Thus, in terms of the recoded abstract
structure representation provided to State, the two se-
quences ABCBAC and DEFEDF are equivalent: u, u, u, n -
2, n -  4, n -  3. For sequences that follow this “rule,” the
pattern of activation (context) produced in State by
subsequence u, u, u, n -  2 will reliably be followed by
that context associated with n -  4. To exploit this pre-
dictability, the system should then take the contents of

the STM for the n -  fourth element and direct it to the
output, yielding an RT reduction. This is achieved in the
following manner: For each STM element (i.e., the struc-
tures that store the n -  1, n -  2, ¼ , responses) there is
a unit that modulates (Equation 8) the contents of this
structure to Output. If one of these units is active, the
contents of the corresponding STM structure is directed
to Output (Equation 4 ).

Now, during learning, each time a match is detected
between the current response and an STM element
(Equation 6), the connections are strengthened between
State units encoding the current context and the modu-
lation unit for the matched STM element (Equation 7).
The result is that the next time this same pattern of
activation in State occurs (i.e., before a match n -  4
corresponding to the learned rule), the contents of the
appropriate STM will be directed to Output in anticipa-
tion of the predicted match, thus yielding a reduced RT.
In the same sense that the surface model learns to
anticipate speci�c elements that de�ne a given se-
quence, the abstract model learns to anticipate a repeti-
tive abstract structure that de�nes a class of isomorphic
sequences.

We have now de�ned two formal models for the
treatment of surface and abstract structure, respectively,
that together make up the dual process model. By using
different randomized starting conditions for the models’
connections, we can generate multiple model subjects
that permit the same statistical analysis to be performed
in parallel on human and model populations. In the
following section we will demonstrate a double dissocia-
tion in the models’ processing capabilities. That is, we
will show that the surface model learns surface but not
abstract structure and that the opposite is true for the
abstract model. We will make a special effort to argue
that, indeed, there is no feasible combination of parame-
ter settings, etc., that can yield a single model that is
capable of both types of processing. These observations
concerning the dual process model then provide the
basis for a series of predictions that are subsequently
tested in human subjects.

SIMULATION 1 RESULTS: LEARNING
SURFACE AND ABSTRACT STRUCTURE

This SRT test, using sequences with both surface and
abstract structure, was performed on groups of �ve sur-
face and �ve abstract models, with results supporting the
hypothesis that dissociable systems are required to treat
surface and abstract structure. The mean RTs for predict-
able and unpredictable responses in blocks 1 through 10
are presented in Figure 2 for the two model groups.
Recall that “predictable” and “unpredictable” refer to the
abstract structure, whereas all responses are “predict-
able” by the surface structure. The abstract model
(group) displays reduced RTs only for the predictable
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versus unpredictable responses in blocks 1 through 6,
evidence for pure abstract structure learning. The surface
model displays reductions for both, evidence for surface
structure learning. In the test of transfer to random
material in block 7, both models display negative transfer
for the predictable elements, whereas for the unpre-
dictable elements only the surface model shows negative
transfer. In the test of transfer to a new isomorphic
sequence with the same abstract structure in blocks 9
and 10, the abstract model displays complete transfer to
the new sequence, whereas the surface model displays
negative transfer in block 9 with some improvement in
block 10.

Statistical Con�rmation of Observations

The observations about learning and transfer were
con�rmed by a 2 (Model: abstract, surface) ×  2 (Predict-
ability) ×  6 (Block: 1–6) analysis of variance (ANOVA).
The interaction between Model and Predictability was
reliable, F(1, 336) = 289, p < 0.0001. The effect of Model,
F(1, 336) = 183, p < 0.0001), was also reliable, as were
the effects for Predictability, F(1, 336) = 430, p < 0.0001,
and for Block, F(5, 336) = 118, p < 0.0001.

The observations about negative transfer to a random
series for both models was con�rmed by a 2 (Model:
abstract, surface) ×  2 (Predictability) ×  2 (Block: 6 and 7)
ANOVA. The three main effects were reliable, as was the

interaction between Model, Block, and Predictability, F(1,
112) = 55, p < 0.0001, re�ecting the striking absence of
learning and negative transfer for the abstract model
with unpredictable elements.

The observation about transfer of acquired knowledge
to the new sequence was con�rmed by a 2 (Predict-
ability) ×  2 (Model: surface, abstract) ×  2 (Block: 9 and
10) ANOVA. The Model effect was reliable, F(1, 112) =
4.58, p < 0.05, as were those for Predictability, F(1,
112) = 75.12, p < 0.0001, and Block, F(1, 112) = 6.93,
p < 0.01. The interaction between Model and Predict-
ability was reliable, F(1, 112) = 116.3, p < 0.0001. In
separate ANOVAs for the two models we con�rmed a
signi�cant Predictability effect for the abstract model
(F(1, 56) = 295.6, p < 0.0001) but not for the surface
model (F(1, 56) = 1.6, p = 0.2). This indicates that only
for the abstract model did the abstract knowledge of the
rule transfer to the new isomorphic sequence.

Discussion

In theory, different types of information structure must
be treated by different processes, and, the inverse, a
given processing architecture must be capable of treat-
ing some but not other information structures. These
simulation results demonstrate that for surface and ab-
stract structure, as we have de�ned them, there are two
corresponding sequence learning models, each of which
is capable of learning only one of these types of sequen-
tial structure. Speci�cally, the abstract model was sensi-
tive only to the sequence elements that were predictable
by the abstract structure and demonstrated strictly no
learning for the sequence elements that were unpre-
dictable by the abstract structure, despite the fact that
these elements recurred in a regular fashion in the
surface structure. For this reason it was not sensitive to
the change in surface structure in blocks 9 and 10. In
contrast, the surface model was insensitive to the
predictable/unpredictable distinction in the abstract
structure, displaying reduced RTs for both types of ele-
ments, indicative of learning the surface structure. This
knowledge, however, was seen to be inadequate for
supporting transfer to the isomorphic sequence of
blocks 9 and 10, which was effectively treated as a new
sequence.

SIMULATION 2 RESULTS: LEARNING
ABSTRACT STRUCTURE ALONE

Here we consider performance of the two models when
only an abstract structure is present in repeating se-
quences. Figure 3 displays the mean RT values for pre-
dictable and unpredictable elements for the Surface and
Abstract models. During training in blocks 2 through 4,
the predictable structure had a large effect on RTs, pri-
marily for the abstract model, although there appears to
be some effect of predictability in the surface models as

Figure 2. Simulation 1. Mean RTs for predictable and unpredictable
responses in the 10 blocks of trials for Surface and Abstract model
groups. Blocks 1 through 6 and 8 have the same surface and ab-
stract structure. The isomorphic sequence in blocks 9 and 10 retains
this abstract structure but has a different surface structure. Block 7
is random. The critical blocks for learning and transfer assessment
are marked in the rounded boxes. The surface model learns only the
surface structure and does not transfer to the isomorphic sequence.
The abstract model learns only the abstract structure and transfers
this knowledge to the isomorphic sequence. Rtime expressed in
simulation time units (stu) where one network update cycle corre-
sponds to 0.005 stu.
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well. There was a negative transfer to the �nal random
block but only for the predictable elements in the ab-
stract model.

Statistical Con�rmation of Observations

The observations about learning were con�rmed by a 2
(Model: surface, abstract) ×  2 (Predictability: predictable,
unpredictable) ×  3 (Block: 2–4) ANOVA. The Model ×
Predictability interaction was reliable, F(1, 78) = 53.7,
p < 0.0001, re�ecting the performance bene�t of the
predictable abstract structure only for the abstract
model. The main effect of Model, F(1, 78) = 5.9, p < 0.05,
was reliable, as was that for Predictability, F(1, 78) = 96.9,
p < 0.0001.

The observations about negative transfer to the ran-
dom material in block 5 were con�rmed by a 2 (Model:
surface, abstract) ×  2 (Predictability: predictable, unpre-
dictable) ×  2 (Block: 4 and 5) ANOVA. The Model ×
Predictability ×  Block interaction was reliable, F(1, 52) =
6.8, p < 0.05. A posthoc test (Scheffe) revealed that the
negative transfer was signi�cant only for the abstract
model with predictable elements.

The observation that the surface model may have
displayed a prediction effect was con�rmed by a 2 (pre-
dictable, unpredictable) ×  3 (Block: 2–4) ANOVA. Indeed,
the surface model displayed a reliable effect for Predict-
ability, F(1, 39) = 5.35, p < 0.05, indicating that this
architecture is capable of acquiring some of the predict-
able structure of the isomorphic sequences.

Discussion

These results con�rm that even in the absence of surface
structure, the abstract model learns and transfers knowl-
edge of this abstract structure and that the surface model
fails to do so at the same level. However, the observation
that the surface model does acquire some knowledge of
the abstract structure requires explanation.

This observation is counter to our position that the
surface model should be incapable of exploiting the
abstract structure. The explanation for this observation
lies in the potential capacity of the surface model to
exploit the weak but present surface structure of these
sequences in terms of single-item recency. Consider the
following sequence fragment . . . ABC BCD CDE . . . in
which the �rst two elements of each triplet are predict-
able and the third is unpredictable by the abstract struc-
ture “n -  2, n -  2, u.” Note the single-item recency of lag
-  1 for predictable elements (e.g., B and C in BCD)
versus the single-item recency of lag -  19 for unpre-
dictable elements, (e.g., D in BCD). All sequence ele-
ments that are predictable by the abstract structure are
also favored in terms of single-item recency. Because the
surface model cannot represent the abstract structure as
de�ned above, its small but signi�cant predictability
effect appears to be purely a function of single-item
recency differences between predictable and nonpre-
dictable elements (surface structure) and does not cor-
respond to the abstract structure and thus cannot
provide the basis for transfer of learning to isomorphic
sequences. Indeed in Simulation 1, the single-item re-
cency difference for predictable versus unpredictable
elements is smaller (lag -  2 and lag -  8 versus lag -  1
and lag -  19 in Simulation 2), and there is no predict-
ability effect for the surface model in Simulation 1 (F(1,
196) = 3.18, p > 0.1), nor is there any transfer to the
isomorphic sequence in blocks 9 and 10.

With respect to our argument that two models are
necessary to accommodate surface and abstract struc-
ture, one might argue that in Simulation 2, a single model
could produce both types of behavior based on single-
item recency, with a simple gain reduction responsible
for the smaller predictability effect in the implicit/
surface condition. This argument fails, however, when we
apply it to Simulation 1. There the difference between
the Abstract and Surface models is a difference of kind,
not quantity, demonstrating behaviors that cannot be
attributed to a common system.

TESTING SIMULATION PREDICTIONS IN
HUMANS

By extending these observations, which support dissoci-
able systems, to human SRT performance we can now
test the hypothesis that surface and abstract structure
are processed by dissociable systems in humans. An
important issue in testing this hypothesis is to develop

Figure 3. Simulation 2. Mean RTs for predictable and unpredictable
responses in the �ve blocks of trials for surface and abstract model
groups. The �rst (Rand1) and last (Rand2) of the �ve blocks of 120
trials are random. Block 2–4 (S1, S2, and S3) are made up of three
different repeating isomorphic sequences, one per block. The critical
blocks for learning and transfer assessment are marked in the
rounded boxes. The abstract model learns and transfers the abstract
structure, and the surface model does not. Rtime expressed in simula-
tion time units (stu) where one network update cycle corresponds
to 0.005 stu.
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a method to isolate such processes in humans. As men-
tioned above, several recent studies demonstrate that
abstract rule processing involves explicit intentional ef-
fort in mapping the appropriate rule onto the target
problem (Gick & Holyoak, 1983; Gomez, 1997; Mathews
et al., 1989; Shanks & St. John, 1994), whereas surface
structure processing is likely to be a more automatic,
implicit function (e.g., Cohen et al., 1990; Curran &
Keele, 1993). We consider that in implicit conditions,
primarily processes capable of learning surface but not
abstract structure will be accessible, whereas in explicit
conditions both will be accessible.

We thus employ two experimental conditions to dis-
sociate the effects of surface structure versus abstract
structure learning. In the Explicit condition, the subjects
were shown a diagram visually depicting the abstract
structure in question and were told before and once
during the examination that such a rulelike structure
might be found in the subsequent testing and that
searching for and �nding such a structure could aid their
performance. In the Implicit condition the subjects were
simply told that they should respond as quickly and
accurately as possible. In the following three experi-
ments, we compare explicit and implicit human perfor-
mance in SRT tasks that manipulate surface and abstract
structure, with the goal of demonstrating that learning
surface and abstract structure rely on functionally disso-
ciable mechanisms. Experiment 1 thus repeats the pro-
tocol that was used in Simulation 1.

Experiment 1 Results: Learning Surface and
Abstract Structure

The analysis focused on the RT data for predictable and
unpredictable events. The mean RTs for predictable and
unpredictable responses in blocks 1 through 10 are
presented in Figure 4 for the Explicit and Implicit
groups. Both groups display progressively reducing RTs
in blocks 1 through 6, with an additional reduction for
the predictable elements seen only in the Explicit group.
This suggests that although both groups pro�t from the
surface structure, only the Explicit group bene�ts addi-
tionally from the abstract structure. This predictability
advantage in the Explicit group does not appear to
change over blocks 1 through 6. Both groups display
negative transfer to random material in block 7 and
positive transfer to block 8, which is constructed as
blocks 1 through 6. The test of transfer involves new
material with different surface structure but the same
abstract structure in blocks 9 and 10. The explicit group
transfers knowledge of the abstract structure as revealed
by signi�cantly reduced RTs for predictable elements in
block 9 and 10, whereas the implicit group shows no
evidence of learning or transfer of the abstract informa-
tion.

In posttest interviews, all of the Explicit group sub-
jects reported awareness of a repeating structure in the

sequence blocks and were able to sketch a �gure that
re�ected ABCBAC structure. The sketches were consid-
ered to re�ect reasonable awareness if they included at
least two of the three repetitions n -  2, n -  4, and n -
3. None of these subjects reported a speci�c awareness
of the 12-element sequence ABCBACDEFEDF, and our
interview did not attempt to quantify partial knowledge.
None of the Implicit group subjects reported any aware-
ness of the underlying abstract structure or a speci�c
awareness of the 12-element sequence ABCBACDEFEDF.

Statistical Con�rmation of Observations

The observations about learning in blocks 1 through 6
were con�rmed by a 2 (Group: Explicit, Implicit) ×  2
(Predictability) ×  6 (Block: 1–6) ×  ANOVA. The effect of
Group, F(1, 696) = 155.8, p < 0.0001, was reliable, as
were the effects for Predictability, F(1, 696) = 10.7, p <
0.005, and for Block, F(5, 696) = 36.0, p < 0.0001. The
interaction between Group and Predictability was reli-
able, F(1, 696) = 14.2, p < 0.0005, corresponding to the
observation of a Predictability effect in the Explicit but
not Implicit group. This was con�rmed by the absence
of a Predictability effect for the Implicit group (F(1,
348) = 0.11, p = 0.7). The observation that the predict-
ability effect did not vary with block was con�rmed by
the nonsigni�cant interaction between Predictability and
Block (1 through 6) for the Explicit group, F(5, 348) =
0.18, p > 0.9.

The observations about negative transfer to a random
series in block 7 for both groups were con�rmed by a

Figure 4. Experiment 1. Mean RTs for predictable and unpre-
dictable responses in the 10 blocks of trials for Explicit and Implicit
subjects. Blocks 1 through 6 and 8 have the same surface and ab-
stract structure. Blocks 9 and 10 retain this abstract structure but
have a different surface structure. Block 7 is random. The critical
blocks for learning and transfer assessment are marked in the
rounded boxes. Explicit subjects learn surface and abstract structure
and display transfer to blocks 9 and 10. Implicit subjects learn only
surface structure, with no transfer.
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2 (Group: explicit, implicit) ×  2 (Predictability) ×  2
(Block: 6 and 7) ANOVA. The interaction between Group
and Block was reliable, F(2, 232) = 22.4, p < 0.0001.
Planned comparisons revealed signi�cant differences in
both groups between RTs in blocks 6 and 7 for predict-
able and unpredictable events. The effect for Block was
also reliable, F(1, 232) = 257.9, p < 0.0001, as was that
for Group, F(1, 232) = 6.7, p < 0.05.

The observation about transfer of acquired knowledge
to the new sequence was con�rmed by a 2 (Predict-
ability) ×  2 (Group: explicit, implicit) ×  2 (Block: 9 and
10) ANOVA. The Group effect was reliable, F(1, 232) =
38.7, p < 0.0001, as were those for Predictability, F(1,
232) = 15.37, p < 0.0005, and Block, F(1, 232) = 18.5,
p < 0.0001. The interaction between Group and Predict-
ability was reliable, F(1, 232) = 5.2, p < 0.05. Separate
ANOVAs for the two groups con�rmed a signi�cant Pre-
dictability effect for the Explicit group (F(1, 116) = 17.6,
p < 0.0001), but not for the Implicit group (F(1, 116) =
1.7, p = 0.23).

Discussion

The results from the Implicit and Explicit groups provide
clear evidence for a dissociation between processing of
the surface and abstract structures of a sequence that
has both structures. Explicit subjects acquired and used
both types of knowledge and transferred the abstract
knowledge to a new, isomorphic sequence. Note that
transfer does not imply improvement on the transfer
block but simply the maintenance of the previously
established performance. The Implicit group acquired
only the surface structure and did not transfer this infor-
mation to the isomorphic sequence. It is important to
note that with respect to the abstract structure, the
group difference is a difference of kind, not of degree.
There is no evidence of acquisition of the abstract struc-
ture in the Implicit group. In contrast, both groups dem-
onstrate a signi�cant learning of the surface structure.
The fact that surface structure can be acquired inde-
pendently of abstract structure argues strongly for the
existence and use of distinct processes for treating sur-
face and abstract structure.

Because our Explicit subjects were briefed on the rule,
their performance improvement for predictable ele-
ments could be attributed to their learning to apply the
rule rather than their learning or discovery of the rule
itself. The point of interest, however, is that knowledge
of the rule yields a performance advantage for predict-
able but not unpredictable elements both in the initial
training sequence and in a new, isomorphic sequence,
indicating a transfer of the rule-based information.

Comparing Simulation and Human Performance

It is of interest to note the difference between the
human and simulation data in these conditions. Whereas

the surface model predicts the behavior of the Implicit
group rather well, the abstract model differed from the
Explicit group in two major ways. First, it displayed no
learning for the unpredictable elements, whereas the
Explicit group showed signi�cant learning. To under-
stand this difference we note that the simulations allow
a complete isolation of the surface and abstract systems,
but this is not possible in humans. That is, for explicit
learning in humans, we cannot prevent the surface (im-
plicit) system from operating in parallel with the abstract
(explicit) system. This is demonstrated by the signi�cant
learning effect in the Explicit group for elements that
have surface structure but are unpredictable by the ab-
stract structure. This, along with the Group ×  Block (6
and 7) interaction, allows us to consider that there is an
additive effect between these two systems in humans
(Mathews et al., 1989).

The second major difference is the lack of negative
transfer for predictable elements in block 9 for the
Abstract model as compared to the Explicit subjects. The
abstract model does not, in fact, make any distinction
between blocks 8 and 9 because it operates entirely in
terms of abstract structure, which is identical for these
two isomorphic sequences. Explicit subjects’ perfor-
mances on predictable elements of the abstract struc-
ture on block 9, however, are in�uenced by the change
in surface structure, even though the abstract structure
remains the same, demonstrating the additive effect be-
tween surface and abstract structure processing mecha-
nisms in humans.

As we previously stated, simulation of the abstract
model alone is psychologically invalid in the sense that
although the processes related to abstract structure can
be engaged (or not) as a function of the pretrial instruc-
tions and intention, the processes that treat surface
structure are engaged by default. Thus we should con-
sider the combined behavior of both of the dual proc-
esses to simulate what occurs in explicit conditions. We
simulate the performance of such a dual process model
as a nonlinear combination of the performance of the
surface and abstract models. This performance and that
of explicit human subjects were compared by a
piecewise linear regression on the 20 data points
de�ned by the RTs for predictable and unpredictable
elements for the dual-process model and the Explicit
group, yielding a signi�cant correlation, r2 = 0.79, p <
0.00001 versus the correlation r2 = 0.33, p = 0.0093 for
the Abstract versus Explicit comparison. Figure 5 dis-
plays the resulting behavior for the dual process model.
We now see humanlike performance regarding learning
for the unpredictable events, and negative transfer in
block 9 is now seen in the hybrid model. A linear regres-
sion analysis for the Surface model and Implicit group
revealed a correlation of r2 = 0.853, p < 0.0001.
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Experiment 2 Results: Learning Abstract
Structure Alone

We now test the learning and transfer of abstract struc-
ture (ABCBAC) with continuously changing surface
structure. The mean RTs for predictable and unpre-
dictable responses in blocks 1 through 9 are presented
in Figure 6 for the Explicit and Implicit groups. The
Explicit group displays greatly reduced RTs for the pre-
dictable versus unpredictable responses in blocks 1
through 6, whereas such a reduction is not seen for the
Implicit group. In the test of transfer to a new but similar
abstract structure (ABACBC) in block 7 and transfer to
random material in block 9, the Explicit group displayed
a large RT increase for the predictable elements but not
for the unpredictable ones. This effect appears absent in
the Implicit group. This difference in behavior for trans-
fer to the new abstract structure (block 7) indicates that
the Explicit group learns the abstract structure itself, but
the Implicit group does not.

In the posttest interviews, all of the Explicit subjects
reported awareness of a repeating structure in the se-
quence blocks and were able to sketch a �gure that
re�ected some knowledge of the ABCBAC structure. The
sketches were considered to re�ect reasonable aware-
ness if they included at least two of the three repetitions
n -  2, n -  4, and n -  3. As in Experiment 1, none of the
Implicit subjects reported any awareness of the underly-
ing structure.

Statistical Con�rmation of Observations

The observations about learning and transfer of the ab-
stract structure were con�rmed by a 2 (Group: explicit,
implicit) ×  2 (Predictability: predictable, unpredictable)
×  6 (Block: 1–6) ANOVA. The interaction between Group

and Predictability was reliable, F(1, 336) = 70.5, p <
0.0001, corresponding to the observation that the pre-
diction effect is seen primarily in the Explicit group. The
effect of Group, F(1, 336) = 4.8, p < 0.05, was also
reliable, as were the effects for Predictability, F(1, 336) =
106.8, p < 0.0001, and for Block, F(5, 336) = 8.5, p <
0.0001.

The observations about negative transfer to a different
abstract structure and to a random series for the Explicit
subjects were con�rmed by a 2 (Group: explicit, Im-
plicit) ×  2 (Predictability: predictable, unpredictable) ×  3
(Block: 7–9) ×  ANOVA. The Group effect was reliable, F(1,
168) = 42.8, p < 0.0001, as were those for Predictability,
F(1, 168) = 53.11, p < 0.0001, and Block, F(2, 168) = 12.6,
p < 0.0001, and all three of the two-way interactions.
Planned comparisons revealed signi�cant differences be-
tween RTs in blocks 7 and 8 (new versus learned ab-
stract structure) and blocks 8 and 9 (learned abstract
structure versus random) only for the Explicit subjects
and only for the predictable elements.

The observation about a possible Predictability effect
in the Implicit group was con�rmed by a 2 (Predict-
ability) ×  6 (Block: 1–6) ANOVA. The effect for Predict-
ability was just reliable, F(1, 168) = 3.97, p = 0.048.
However, the lack of negative transfer in block 7 as
revealed by planned comparison indicates that the pre-
dictability effect for the Implicit group is in fact due to
single-item recency as described in Simulation 2, rather
than learning that is speci�c to the abstract structure.

Figure 5. Experiment 1. Comparison of explicit human perfor-
mance and dual process model performance. Same format as Fig-
ure 4, see text.

Figure 6. Experiment 2. Mean RTs for predictable and unpre-
dictable responses in the nine blocks of trials for Explicit and Im-
plicit subjects. There is no repetitive surface structure throughout
the nine blocks. Block 7 uses a different abstract structure than that
in blocks 1 through 6 and 8, and block 9 is random. The critical
blocks for learning and transfer assessment are marked in the
rounded boxes. Only Explicit subjects learn the abstract structure
and display negative transfer to the novel abstract structure in
block 7.
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Discussion

This experiment demonstrated that abstract knowledge
can be acquired by the Explicit subjects even in the
absence of repeating surface structure and that this
knowledge is speci�c to a given abstract structure and
does not transfer to related but different abstract struc-
ture. Indeed, for the predictable elements, the Explicit
group showed negative transfer to a new abstract struc-
ture and to random material, ruling out the possibility
that their predictability effect is due to single-item re-
cency. In contrast, in the Implicit group there was no
change in the small predictability effect when the ab-
stract structure was changed, indicating the use of re-
cency cues in the surface structure. This allows us to
conclude that the relatively small predictability effect in
the Implicit group is not due to weak learning of the
abstract structure but rather to single item recency ef-
fects. Note again, however, that the single-item recency
explanation does not hold for the Explicit group because
the negative transfer in block 7 is unexplained.

Experiment 3 Results: Learning Abstract
Structure Alone

Figure 7 displays the mean RT values for predictable and
unpredictable elements for the Explicit and Implicit
groups in the task described in Simulation 2. During
training in blocks 2 through 4, the predictable structure
had a large effect on RTs, primarily for the Explicit group,
as learning accumulated over the three sequence blocks,
although there appears to be some effect of predict-
ability in the Implicit group as well. There was a large
negative transfer to the �nal random block but only for
the predictable elements in the Explicit group.

In the posttest interviews, all of the Explicit subjects
reported awareness of a repeating structure in the three
sequence blocks and were able to sketch a �gure that
re�ected the “n -  2, n -  2, u” structure. The sketches
were considered to re�ect reasonable awareness if they
included a directed graph representing the pattern A-B-
A-B-C. In contrast, none of the Implicit subjects reported
any awareness at all of the underlying analogical schema.
Several reported that if there was any pattern, it was too
long and complicated to be learned.

Statistical Con�rmation of Observations

The observations about training were con�rmed by a 2
(Group: explicit, implicit) ×  2 (Predictability: predictable,
unpredictable) ×  3 (Block: 2–4) ANOVA. The Group ×
Predictability interaction was reliable, F(1, 78) = 37.3,
p < 0.0001, indicating that the performance bene�t of
the predictable abstract structure is dependent, as pre-
dicted, on Group. The main effect of Group, F(1, 78) =
51, p < 0.0001, was reliable, as were those for Predict-
ability, F(1, 78) = 74.6, p < 0.0001, and for Block, F(2, 78)

= 7.2, p < 0.005, and for the Predictability ×  Block
interaction, F(2, 78) = 4.48, MSE = p < 0.005. The obser-
vations about a progressive improvement in the Explicit
group were con�rmed by a 2 (Predictability) ×  3 (Block:
2–4) ANOVA, with a signi�cant interaction (F(2, 39) =
5.69, p < 0.0001).

The observations about negative transfer to the ran-
dom material in block 5 were con�rmed by a 2 (Group:
explicit, implicit) ×  2 (Predictability: predictable, unpre-
dictable) ×  2 (Block: 4 and 5) ANOVA. The Group ×
Predictability ×  Block interaction was reliable, F(1, 52) =
11.4, p < 0.005, re�ecting the observed negative transfer
from block 4 to 5 only for the Explicit group with
predictable elements. A post hoc test (Scheffe) revealed
that the negative transfer was signi�cant only for the
Explicit group with predictable elements.

The observation that the Implicit group may have
displayed a Predictability effect was not con�rmed by a
2 (predictable, unpredictable) ×  3 (block 2–4) ANOVA.
However, the implicit group displayed a nearly reliable
effect for Predictability, F(1, 39) = 3.9, MSE = 8880, p =
0.055, suggesting that like the Surface model, they ex-
ploited single-item recency effects in the isomorphic
sequences. Neither the Block effect nor the interaction
were reliable.

Discussion

To compare the results of the surface model with those
from the Implicit subjects, a linear regression was ap-
plied to the 10 RT means (predictable and unpredictable
in the �ve blocks), demonstrating a signi�cant correla-

Figure 7. Experiment 3. Mean RTs for predictable and unpre-
dictable responses in the �ve blocks of trials for Explicit and Im-
plicit groups. The �rst and last of the �ve blocks of 120 trials are
random (Rand). Block 2–4 (S1, S2, and S3) are made up of three dif-
ferent repeating isomorphic sequences, one per block. The critical
blocks for learning and transfer assessment are marked in the
rounded boxes. Only Explicit subjects learn the abstract structure.
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tion with r 2 = 0.76, p = 0.001. The same analysis for the
abstract model and Explicit subjects also yielded sig-
ni�cant correlation with r2 = 0.93, p = 0.000005.

These data recon�rm the observation that explicit
learning conditions are necessary to encode and transfer
abstract structure. Likewise, simulation data indicate that
only the abstract model architecture is adequate for
learning the abstract structure that is common to the
three sequence blocks and also imply that small predict-
ability effects in the Implicit group might be due to
single-item recency. This suggests that in explicit learning
a processing capability—corresponding to that of the
abstract model—is enabled, whereas it is not enabled in
the implicit learning conditions.

GENERAL DISCUSSION

A given sequence of stimuli can encode different types
of information or structure. Depending on the type of
encoded structure, different mechanisms may be re-
quired to extract that structure (e.g., Chomsky, 1959;
Turing, 1936). We de�ne surface structure in terms of the
straightforward serial order of sequence elements. In
contrast, abstract structure is de�ned in terms of ordered
relations between repeating sequence elements. Thus,
although the two sequences ABCBAC and DEFEDF have
different surface structures, their abstract structures are
identical. The purpose of the current research has been
to test the hypothesis that, as de�ned, surface and ab-
stract sequential structure are processed by distinct and
dissociable systems. Separate results from simulation and
related human experiments support this hypothesis and,
combined with recent neuropsychological results, pro-
vide a framework for an initial speci�cation of the un-
derlying neurophysiology.

Simulation Evidence for Dissociable Processes

It has been clearly demonstrated that although our “sur-
face model” of sequence learning, based on the func-
tional neuroanatomy of the primate fronto-striatal system
(Dominey, Arbib, et al., 1995), is quite capable of display-
ing humanlike performance for learning surface struc-
ture (Dominey, 1995, 1998a, 1998b) as well as explaining
primate cortical electrophysiological results in cognitive
sequencing tasks (Dominey, Arbib, et al., 1995; Dominey
& Boussaoud, 1997), it fails to learn abstract structure
(Dominey, 1997b; Dominey et al., 1995a, 1995b). This
provides a formal argument for the independence of
processes that learn surface and abstract structure, re-
spectively. Part of what is missing in the surface model
is a specialized short-term or working memory that has
been proposed to be necessary to construct the map-
ping from source to target problems in analogical rea-
soning (Holyoak et al., 1994; Holyoak & Thagard, 1989;
Thagard, Holyoak, Nelson, & Gochfeld, 1990). When the
surface model is modi�ed to include a short-term mem-

ory of the previous responses that can be compared
with current responses, so as to encode the repetitive
structure, the resulting abstract model is capable of learn-
ing and exploiting the abstract structure of sequences,
independently of the surface structure (Dominey, 1997a,
1997b, 1998c; Dominey et al., 1995a, 1995b). This pro-
vides the second half of the dissociation. The surface
model learns surface but not abstract structure, and the
abstract model learns abstract but not surface structure,
with the surface model simulating performance of the
implicit group, and the combined surface and abstract
models simulating performance of the explicit group.

One might argue, however, that the more powerful
Abstract model could simulate both groups’ perfor-
mance. If the extent of the short-term memory is in-
creased to accommodate the 12 previous events, the
Abstract model could learn the surface structure of se-
quence ABCBACDEFEDF from Experiment 1, based on
the abstract structure “n -  12, n -  12, ¼ , n -  12.” In this
sense, one might suggest that the same model could
explain behavior attributed to distinct processes for sur-
face and abstract structure, with explicit and implicit
human performance modeled by a simple gain modi�ca-
tion in the single model. There are, however, at least two
�aws in this approach.

First, as we recall from Experiment 1, the Implicit and
Explicit groups’ performances are different in kind, not
in degree. The highly visible predictability effect in the
Explicit group does not exist in the Implicit group. Thus
a simple “gain” change in the abstract model can account
for this difference. Second, for the implicit group, the
data could be explained by the abstract model only if (1)
the size of the STM is raised to 12 elements (versus a
minimal STM size of only 4 required for the explicit
group) and (2) the implicit group is modeled by a much
more complex and memory-intensive system than the
explicit group (i.e., STM extent of 12 versus 7 ± 2). Thus,
the single-model approach requires one to defend the
idea that a system that is quite “overquali�ed” is at work
in all manipulations of surface structure. In taking this
position, one is forced to reject a large body of work on
recurrent network learning (e.g., Cleeremans & McClel-
land, 1991; Dominey, 1995, 1998a, 1998b; Elman, 1990)
and obliged to say that even though recurrent networks
can simulate SRT and related results, a more complex
model must be proposed to avoid a dual-process expla-
nation.

We clearly admit, however, that the dual-process
model as proposed is by no means complete. That is,
there are related forms of rule-based abstract structures
that cannot be processed by the abstract model. For
example, consider the sequence “A-B-C, left of A, left of
B, left of C.” The �rst three elements are unpredictable,
and the next three are predictable, based their spatial
relations with the �rst three. Although humans are likely
to pick up on this rule and transfer it to isomorphic
sequences, the abstract model in its current state would
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not because it doesn’t have the representational hard-
ware to exploit these spatial relations.

Experimental Evidence for Dissociable Processes
from Healthy Subjects

The results of manipulation of surface and abstract struc-
ture in three experiments with human subjects provide
evidence that two distinct mechanisms are required to
treat surface and abstract structure, respectively, in hu-
mans. Experiment 1 provided the crucial test of whether
knowledge of surface structure could be acquired inde-
pendently of knowledge of abstract structure while both
were present. In agreement with the proposed hypothe-
sis, implicit subjects, although capable of signi�cant
learning of surface structure, did not learn the abstract
structure nor display transfer to the new isomorphic
sequences. Experiments 2 and 3 demonstrated that in
the absence of surface structure, only explicit subjects
are capable of extracting the abstract structure and trans-
ferring it to isomorphic sequences, and Experiment 2
demonstrated that this learning is highly speci�c to the
learned abstract structure.

It is important to note that we do not claim that
explicit learning is equal to abstract structure learning,
nor that implicit learning is equal to surface structure
learning. Our point is to demonstrate the existence of
distinct processes for distinct types of information proc-
essing. To do so we choose to observe performance in
the functional modes (implicit versus explicit) in which
these processes may be expressed or liberated. Our
choice is supported by the observation of Gomez (1997)
that in an implicit sequence learning task, surface struc-
ture was learned but no learning or transfer of abstract
structure occurred. This suggests that holistic exposure
to entire strings permits additional processing that is not
possible in an element-by-element presentation as in our
SRT tasks. Likewise, in an AGL task using the same mate-
rial but presented in letter strings, Gomez observed that
surface structure (�rst-order dependencies) learning can
occur without explicit awareness, whereas learning ab-
stract structure (supporting transfer to changed letter
sets) is invariably linked to explicit knowledge. The de-
bate over the possibility of transfer with implicit learn-
ing, however, is not yet resolved (Gomez, 1997;
Knowlton & Squire, 1993) and is likely to require the use
of control subjects in the testing conditions and a careful
control over nongrammatical cues that could bias trans-
fer scores. In this framework, although AGL has been
often considered a test of implicit learning, we recall that
the testing phase includes an instruction to exploit rule-
based regularities that probably invokes explicit abstrac-
tion processes (Perruchet & Pacteau, 1991; Reddington
& Chater, 1996). It is just this kind of explicit instruction
to directs one’s attention that can lead subjects in prob-
lem-solving studies to abstract a shared rule based on
previous problems to solve the current problem (Gick

& Holyoak, 1983). Such behavioral process shifting is
consistent with recent observations that attentional state
and awareness can in�uence the selection of neuro-
physiological cognitive processes (Grafton, Hazeltine, &
Ivry, 1995; Treue & Maunsell, 1996).

Toward a Neurophysiological Basis for
Dissociable Systems

We can now begin to specify a neurophysiological basis
for these dissociable systems for surface and abstract
structure processing in terms of recent results from
neuropsychological experiments. Patients with fronto-
striatal dysfunction due to Parkinson’s disease are sig-
ni�cantly impaired in a SRT task that requires learning
surface structure under implicit conditions, yet they
have near normal performance when the task becomes
explicit (Pascual-Leone et al., 1993). More interestingly,
these patients display an intact capability to learn ab-
stract sequential structure in explicit conditions
(Dominey et al., 1997; Dominey & Jeannerod 1997). This
indicates that although the fronto-striatal system pro-
vides part of the neurophysiological basis for implicit
processes that can acquire surface structure, it is less
involved in explicit processes that treat abstract struc-
ture. This is supported by the demonstration that our
model of the primate cortico-striatal system that explains
prefrontal electrophysiology during primate sequence
learning tasks (Dominey, Arbib, et al., 1995; Dominey &
Boussaoud, 1997) is also capable of learning surface
structure, yet fails to learn abstract structure (Dominey,
1997b; Dominey et al., 1995a, 1995b).

In comparison to the Parkinson’s disease patients,
schizophrenic patients yield an opposite pro�le and an-
other piece of the puzzle. That is, although schizophrenic
patients display signi�cant learning of surface structure,
they fail to learn abstract structure (Dominey & Geor-
gieff, 1997). Because schizophrenia is characterized in
part by a hypoactivity of the left anterior cortex (Suzuki,
Kurachi, Kawasaki, Kiba, & Yamaguchi, 1992), we can
consider that the impaired abstract structure learning in
these participants might be related to this left hypofron-
tality. Such an interpretation �ts well with the initial
motivation behind the development of the abstract
model, which was to account for the ability to generalize
between “grammatically” related, but novel, sensorimotor
sequences (Dominey, 1997b). This work was based in
part on related ideas from Green�eld (1991) suggesting
that linguistic syntax, and abstract aspects of motor con-
trol, are treated in Broca’s area and adjacent cortical
motor areas in the left anterior cortex. It is thus of
interest to note that the left hypofrontality may contrib-
ute not only the failed processing of abstract structure
that we observed in schizophrenic patients (Dominey &
Georgieff, 1997) but also to their impairment in gram-
matical language processing (e.g., Portnoff, 1982). We
thus propose that surface structure can be learned by
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processes that can operate under implicit conditions and
rely on the fronto-striatal system, whereas learning ab-
stract structure requires a more explicit activation of
dissociable processes that rely on a network that in-
cludes the left anterior cortex.

Conclusion

From the theoretical perspective that fundamentally dif-
ferent information structures must be treated by distinct
computational machines, we predicted the existence of
computationally, behaviorally, and neurophysiologically
dissociable systems for treating surface and abstract
structure in sensorimotor sequences. Starting with a re-
current network that is based on the functional
neuroanatomy of the fronto-striatal system, we demon-
strated that surface structure can be learned inde-
pendently of abstract structure and that only after
undergoing modi�cations that provide distinct repre-
sentational capabilities can the updated model learn
abstract structure. We propose that the surface (fronto-
striatal) model corresponds to human processes that are
accessible in implicit conditions and that the abstract
model corresponds to human processes that must be
deliberately put into play in explicit conditions. This
concurs with an increasing body of evidence that trans-
fer performance in arti�cial grammar and sequence
learning is linked to explicit knowledge and processing
(Gomez, 1997; Mathews et al., 1989; Perruchet & Pacteau,
1991; Reddington & Chater, 1996). Three human experi-
ments designed around these assumptions demonstrated
that the processing of surface and abstract structure can
be behaviorally dissociated in human subjects, corre-
sponding to the dissociation between the surface and
abstract models. These results support our initial hy-
pothesis that surface and abstract structure are treated
by distinct mechanisms. Combined with our neuropsy-
chological results, the current results are consistent with
the position that implicit processes for surface structure
learning depend on the fronto-striatal system, whereas
processes for abstract structure learning that are re-
vealed in explicit conditions rely in a dissociated fashion
on a network that includes the left anterior cortex. This
is in agreement with the general position that instances
versus rules or categories are probably treated by disso-
ciable information processing systems in humans (e.g.,
Knowlton & Squire, 1993, 1996; Shanks & St. John, 1994).

METHODS

Simulation 1: Learning Surface and Abstract
Structure

The �rst simulation is designed to test the models’ ability
to learn surface and abstract structure when both are
present in the same sequence to determine if it is pos-
sible to learn surface structure independently of abstract

structure. The SRT test we employ consists of 10 blocks
of 108 trials each, where each trial corresponds to the
presentation of a single-sequence element. Blocks 1
through 6, and 8 use an abstract structure of the form u,
u, u, n -  2, n -  4, n -  3 (where “u” signi�es unpredictable,
and “n -  2” indicates a repetition of the element two
places behind, etc.). This abstract structure recurs twice
in the 12-element sequence ABCBACDEFEDF that re-
peats nine times in each block. Thus, each repetition of
the sequence contains two repetitions of the abstract
structure and one repetition of the surface structure. In
this sequence, predictable elements have a mean single-
item recency of lag -  2, while the unpredictable ele-
ments are lag -  8. Block 7 is a random series of elements.
Blocks 9 and 10 each use nine repetitions of a new,
12-element sequence, isomorphic to that used in blocks
1 through 6 and 8 (i.e., with the same abstract structure
but with a different surface structure), by using a differ-
ent mapping of A through F to elements in the input
array.

In evaluating the performance of the models, the fol-
lowing constraints should be kept in mind. For the ab-
stract structure in question (ABC BAC), the �rst three
elements (ABC) are considered to be unpredictable,
whereas the second three are completely predictable
(BAC). Pure abstract structure learning should be mani-
fest as a reduction in RTs for the predictable but not the
unpredictable elements, with a high degree of transfer
to the isomorphic sequence in blocks 9 and 10. Pure
surface structure learning should be manifest as an RT
reduction for both predictable and unpredictable ele-
ments because that distinction is valid only with respect
to the abstract structure. In addition, there should not be
signi�cant transfer of surface structure learning to the
isomorphic sequence in blocks 9 and 10. This experi-
ment was performed on �ve surface and �ve abstract
models.

Simulation 2: Learning Abstract Structure Alone

The �rst simulation experiment demonstrated the disso-
ciation of surface and abstract structure processing
when both are present in the same sequence. In this
simulation, we address two resulting questions: First, in
the absence of surface structure, is the abstract model
still capable of learning the abstract structure? Second,
is there truly no information that is available to the
surface model in a sequence that has abstract but not
surface structure?

These questions are addressed through the use of
sequences that have a low degree of surface structure
and a high degree of abstract structure. The experiment
consists of �ve blocks of 120 trials each. Blocks 1 and 5
are randomly organized, and blocks 2 through 4 are
sequence blocks. Sequence blocks are based on 24-
element sequences of the form ABC BCD CDE DEF EFG
FGH GHA HAB repeated �ve times to make a block of
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120 trials. To appreciate the surface structure complexity
of this 24-element sequence, note that each of the eight
(A through H) elements appears three times, with two
different successors, yielding a complex, or ambiguous,
sequence. We thus consider that this sequence has a
surface structure that should be relatively dif�cult to
learn. In contrast, a clear form of abstract structure be-
comes evident if we note that the �rst two elements of
each triplet (e.g., B and C in BCD) are predictable repe-
titions of the elements two places behind them (n -  2),
whereas the third is unpredictable (u). This abstract
structure “n -  2, n -  2, u” repeats throughout the se-
quence. The predictable elements have a mean single-
item recency of lag -  1, whereas the unpredictable
elements are at lag -  19.

To study the transfer of abstract structure knowledge,
we construct three isomorphic sequences by using the
24-element pattern described above with three different
mappings of A through H onto eight locations on the 5
×  5 Input array. Thus, the three resulting 24-element
sequences differ completely in their surface structure
(i.e., the serial ordering of their spatial targets). However,
they are isomorphic in that they all share the abstract
structure “n -  2, n -  2, u.” This sequence learning experi-
ment was performed on �ve surface and �ve abstract
models.

Human Experiments

Apparatus

In each of the three experiments, subjects are seated in
front of a touch-sensitive computer screen (Micro-
TouchTM) on which we can display the sequence ele-
ments (2.5 cm2), and record response time (from target
onset until subject’s contact with the screen). The eight
sequence elements are spatially distributed in a
pseudorandom fashion over a 25- ×  25-cm surface of the
screen, as illustrated in Figure 1. The tasks are piloted by
a PC using Cortex software (NIH, Robert Desimone). The
tasks are based on the SRT protocol (Nissen & Bullemer,
1987) and involve pointing to successively illuminated
sequence elements on the touch-sensitive screen as
quickly and accurately as possible. In a given trial, one
of the eight sequence elements is illuminated. After an
element is touched, it is extinguished, the reaction time
is recorded, and the next element is displayed.

Experiment 1: Learning Surface and Abstract
Structure

Simulation 1 demonstrated that the surface model
learned the surface structure of the sequence but made
no distinction between elements that were predictable
versus unpredictable by the abstract structure and dis-
played no transfer of performance to the new, isomor-
phic sequence. In contrast, the abstract model learned
only the elements that were predictable by the abstract

structure and transferred this knowledge quite effec-
tively to the isomorphic sequence. Experiment 1 em-
ploys the same task in Explicit and Implicit groups of
human subjects to determine if the same processing
dissociation demonstrated in the models can be repli-
cated in humans, in order to further demonstrate the
dissociation between processes for treating surface ver-
sus abstract structure.

Experiment 1 Method. This experiment uses the same
procedure as that of Simulation 1 with two groups of 10
subjects each, in the Implicit (surface) and Explicit (ab-
stract) conditions as de�ned above. Blocks 1 through 6,
and 8 use an abstract rule of the form u, u, u, n -  2, n -
4, n -  3 that recurs in the 12-element sequence, ABCBAC-
DEFEDF (where elements ABCDEF are mapped to ele-
ments 285613 in Figure 1), that repeats nine times in
each block. Thus, each repetition of the sequence con-
tains two repetitions of the abstract structure and one
repetition of the surface structure. Predictable elements
have single-item recency of lag -  2, and unpredictable
elements, lag -  8. Block 7 is a random series of elements.
Blocks 9 and 10 each use nine repetitions of a new,
12-element sequence (ABCBACDEFEDF with A through
F mapped to elements 781365), isomorphic to that used
in blocks 1 through 6 and 8 (i.e., with the same abstract
structure but with a different surface structure). The
delay between a response and the next stimulus (re-
sponse to stimulus interval, or RSI) was 200 msec within
a six-element subsequence and 500 msec between sub-
sequences.

Subjects in the Explicit group (N = 10) were shown a
schematic representation of the rule and asked to dem-
onstrate knowledge of the rule by pointing to BAC given
ABC. They were told to actively try to use such a rule to
help them go as fast as possible. Subjects in the Implicit
group (N = 10) were simply told to go as fast as possible
and were given no hint that there might be an underly-
ing structure in the stimuli.

Experiment 2: Learning Abstract Structure Alone

Experiment 1 provides evidence that abstract structure
can be learned and exploited in an SRT setting when
both surface and abstract structure are present. There are
two potential criticisms to this interpretation. First, the
learning of the abstract structure may still require a
coherent, repeating surface structure, and in the absence
of this surface structure, the learning of abstract struc-
ture may fail. Second, performance that we are attribut-
ing to abstract structure learning may be something
much simpler related to a single-item recency effect.
That is, the reduced RTs for predictable elements may
simply be due to the fact that all predictable elements
have a mean single-item recency of lag -  2, whereas the
unpredictable elements have a recency of lag -  8. Thus,
the reduced RT for predictable elements may simply be
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due to a recency effect, rather than the learning of a
speci�c abstract structure. If so, this effect should be
insensitive to a change in abstract structure in transfer
tests with new sequences, provided that the new se-
quence maintains a similar degree of exploitable recency
information. Experiment 2 speci�cally addresses these
questions in the following manner. During training, a
continuously changing surface structure and a �xed ab-
stract structure are used. Testing then occurs with a
continuously changing surface structure and a new �xed
abstract structure that maintains roughly the same de-
gree of single-item recency. If the abstract structure itself
is being learned, we will see negative transfer to the new
abstract structure, with no such negative transfer if it is
primarily recency information that is being exploited. It
is worth mentioning that although some related studies
focus on the learning of rules versus smaller “chunks” of
information (e.g., Knowlton & Squire, 1994), we rule out
any learning effect due to element chunking in the
current experiment because there are no regularly re-
peating chunks (i.e., no repeating surface structure).

Experiment 2 Method. The methods used in Experi-
ment 2 are similar to those in Experiment 1 with the
following exceptions. The test is divided into nine blocks
of 90 trials each. Blocks 1 through 6, and 8 use an abstract
structure of the form ABCBAC (u, u, u, n -  2, n -  4, n -
3) that repeats 15 times. Although the abstract structure
is always the same, the surface structure changes con-
tinuously within each block so that the same sequence
is never repeated. Speci�cally, the mapping between ABC
and elements 1 through 8 changes for each sequence and
is never repeated. Block 7 uses an abstract structure of
the form ABACBC (u, u, n -  2, u, n -  4, n -  2), also with
continuously changing surface structure, and serves as a
transfer test. Block 9 uses a random series. Predictable
elements in the �rst abstract structure have a mean
single-item recency of lag -  2, versus lag -  1.6 for the
transfer abstract structure.

Subjects in the Explicit group (N = 5) were shown a
schematic representation of the rule and told to actively
try to use such a rule to help them go as fast as possible
as in Experiment 1. Subjects in the Implicit group (N =
5) were simply told to go as fast as possible and were
given no hint that there might be an underlying struc-
ture in the stimuli.

Experiment 3: Learning Abstract Structure Alone

Simulation 2 demonstrated that for sequences with a low
degree of surface structure and a high degree of abstract
structure, only the abstract model could learn the ab-
stract structure, and neither model learned the surface
structure. Experiment 3 uses the same protocol as Simu-
lation 2 and allows further testing of the prediction that
abstract structure can be learned independently of sur-
face structure by the Explicit group and that some re-

cency information may be extracted from the surface
structure by the Implicit group.

Experiment 3 Method. As in Simulation 2, the task is
divided into �ve blocks of 120 trials. Blocks 1 and 5 are
randomly organized, and blocks 2 through 4 are se-
quence blocks. Each of the three isomorphic sequence
blocks is made by taking the 24-element sequence
ABCBCDCDE . . . and mapping A through H to different
elements and repeating it �ve times, yielding a total of
120 trials per block. The mappings of A through H for
the three isomorphic sequences are, respectively,
28561374, 54123867, and 71486253. The test starts with
a block of 120 trials in random order, followed by the
three isomorphic sequence blocks of 120 trials each, and
a �nal block of 120 trials in random order. The RSI was
500 msec.

Subjects in the Explicit group (N = 5) were shown a
schematic representation of the rule and told to actively
try to use such a rule to help them go as fast as possible.
Subjects in the Implicit group (N = 5) were simply told
to go as fast as possible and were given no hint that there
might be an underlying structure in the stimuli.

Appendix: Speci�cation of Surface and Abstract
Models

Surface Model

Recurrent State Representation. The model is imple-
mented in Neural Simulation Language (NSL 2.1, Weitzen-
feld, 1991). Equation 1a and 1b describe how the
representation of sequence context in the 5 ×  5 State is
in�uenced by external inputs from Input, responses from
Out, and a recurrent inputs from StateD. In Equation 1a
the leaky integrator, s( ), corresponding to the membrane
potential or internal activation of State is described. In
Equation 1b the output activity level of State is generated
as a sigmoid function, f( ), of s(t). The term t is the time,

t is the simulation time step, and  is the time constant.
As  increases with respect to t, the charge and dis-
charge times for the leaky integrator increase. The t is
5 msec. For Equations 1 through 4, the time constants
are 10 msec, except for Equation 2, which has �ve time
constants that are 100, 600, 1100, 1600, and 2100 msec
(see below).

si (t +  t) = ( 1 -  
t) si (t) + 

t
 (  

j = 1

n

wij
IS  Input j (t) + 

 
j = 1

n

wij
SS StateD j (t) +  

j = 1

n

wij
OS Out j (t) ) (1a)

State(t) = f(s(t)) (1b)

The connections wIS, wSS, and wOS de�ne the projec-
tions from units in Input, StateD, and Out to State. These
connections are one-to-all, are mixed excitatory and in-
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hibitory, and do not change with learning. This mix of
excitatory and inhibitory connections ensures that the
State network does not become saturated by excitatory
inputs and also provides a source of diversity in coding
the conjunctions and disjunctions of input, output, and
previous state information. Recurrent input to State origi-
nates from the layer StateD. StateD (Equation 2a and 2b)
receives input from State, and its 25 leaky integrator
neurons have a distribution of time constants from 100
to 2100 msec (20 to 420 simulation time steps), whereas
State units have time constants of 10 msec (2 simulation
time steps). This distribution of time constants in StateD

yields a range of temporal sensitivity similar to that
provided by using a distribution of temporal delays
(KQhn & van Hemmen, 1992).

sdi (t + t) = (1 -  
t) sdi (t) + 

t
  (Statei (t)) (2a)

StateD = f(sd(t)) (2b)

Associative Memory. During learning, for each correct
response generated in Out, the pattern of activity in State
at the time of the response becomes linked, via reinforce-
ment learning in a simple associative memory, to the
responding element in Out. The required associative
memory is implemented in a set of modi�able connec-
tions (wSO) between State and Out. Equation 3 describes
how these connections are modi�ed during learning. The
�rst response in Out above a certain threshold is selected
by a “winner take all” (WTA) function and is evaluated.
Thus, Equation 3 is executed only once for each re-
sponse. When a response is evaluated, the connections
between units encoding the current state in State and the
unit encoding the current response in Out are strength-
ened as a function of their rate of activation and learning
rate R. R is positive for correct responses and negative
for incorrect responses. Weights are normalized to pre-
serve the total synaptic output weight of each State unit.

wij
SO (t + 1) = wij

SO  (t)  + R  Statei  Out j (3)

The network output is thus directly in�uenced by the
Input, and also by State, via learning in the wSO synapses,
as in Equation 4a and 4b where f( ) includes a WTA
function.

oi (t + t) = (1 -  
t) oi (t) + 

t
 (Inputi (t) + 

 
j = 1

n

wij
SOStatej (t))

(4a)

Out = f(o(t)) (4b)

Abstract Structure Learning Model. To represent and
learn abstract structure, a system must (1) compare the

current sequence element with previous elements to
recognize repetition and (2) maintain a representation of
this recoded context to predict future repetitions. To
provide a record of the previous responses with which
the current response can be compared, the model of
Figure 1 is augmented with a continuously updated
short-term memory (STM) of the �ve previous responses.
Each time a response is generated in Out, the STM is
updated, as described in Equation 5a and 5b so that STM
always contains the �ve previous responses in Out. Each
of the �ve STM elements is thus a 5 ×  5 array.

for i = 5 to 2, STM(i) = STM(i -  1) (5a)

STM(1) = Out (5b)

To detect if the current response is a repetition of one
of the �ve previous responses, it is compared with each
of the �ve previous responses encoded in STM (prior to
update of Equation 5). The result is stored in a six-
element vector called Recognition (Recog in Figure 1).
Each Recognition element i, for 1  i  5, is either 0 if
Out is different from STM(i) or 1 if they are the same, as
described in Equation 6. If no match is detected in STM
for a given response in Out, Recog0 is set to 1, indicating
that a unique (u) response has occurred.

Recogi = STM(i)  Out (6)

After Recognition compares a response in Output
with the contents of the STM, the results of this com-
parison (e.g., u, u, u, n -  2, n -  4, n -  3 for ABCBAC) is
provided as input to State from Recognition, as de-
scribed in the updated version of Equation 1a . Thus the
abstract structure is encoded and represented in the
sequence context.

si (t + t) = (1 -  
t) si (t) + 

t
 (  

j = 1

n

wif
IS Input j (t) + 

 

j = 1

n

wij
SS StateDj (t) +  

j = 1

n

wij
OS Outj (t) + 

 
j = 1

n

wij
RS Recog j (t)) (1a )

The result is that now the abstract structure of se-
quences is represented in State and thus can be ex-
ploited. For example after training with sequence(s)
with the abstract structure u, u, u, n -  2, n -  4, n -  3,
when the model is exposed to a subsequence with the
structure u, u, u, n -  2, it should predict that the next
element will be the same as the element stored in STM4

(i.e., n -  4). To exploit this predictive abstract structure
that is represented in the State pattern, we want to
selectively take the contents of the STM that are pre-
dicted to match the upcoming element and direct this
STM content to Out. To achieve this, a new learning rule
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is developed. Each time a repetition is recognized, con-
nections are strengthened between the active context
(State) units and units in a four-element vector, Modula-
tion (described below), that modulate the contents of
the matched STM element to the output. The result is
that this State pattern becomes increasingly associated
with, and thus predicts, the occurrence of the matched
element, before it occurs. This learning rules is described
in Equation 7.

wij
SM (t + 1) = wij

SM (t) + Statei  Recog j (7)

The goal of this learning is to allow State to modulate
the contents of speci�c, predicted STM elements into
Out. To permit this, a �ve-element vector, Modulation, is
introduced such that for i = 1 to 5, if Modulationi is
nonzero, the contents of STM(i) are modulated or di-
rected to Out. This leads to an updated version of Equa-
tion 4a.

oi (t + t) = (1 -  
t) oi (t) + 

t
 (Input i (t) + 

 
j = 1

n

wij
SO Statej (t) +  

k = 1

m

Modulationk STM(k)i ) (4a )

Based on the learning in Equation 7, State now directs
this modulation of the STM contents into Out via State’s
in�uence on Modulation, as described in Equation 8.

Modulationi  =  
j = 1

n

wij
SM Statej (t) (8)

After training on sequence ABCBAC, when the model
is exposed to a new isomorphic sequence DEFEDF, the
abstract structure u, u, u, n -  2, n -  4, n -  3 will be
recognized. After exposure to subsequence DEFE, the
active State units will drive the Modulation unit corre-
sponding to the n -  4 STM element, STM(4), directing its
contents D to the output, leading to a reduced RT for
the response to D. By the same type of context coding
with which the surface model predicts elements of a
learned sequence, the abstract model can predict ele-
ment repetitions in a learned class of isomorphic se-
quences.
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